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The transport equation derived in the preceding paper is compared to Silin’s and applied to the problem
of interpreting the spin-wave spectrum of weakly magnetized sodium. Several schemes for parametrizing
the conduction-electron interactions are considered; it is shown that the experiments do not yet favor any
particular scheme, and that therefore the nature of the interactions is still undetermined. An uncertainty-
principle argument is offered to suggest that both transport equations are of suspect validity in the range of
frequencies and wavelengths so far experimentally explored.

I. INTRODUCTION

PIN waves in weakly magnetized alkali metals have
been observed as satellite resonances to conduction-
electron spin resonance.! This confirms an early, general
prediction of the existence of such spin waves as given
by Herring and Kittel.2 The details of the interactions
between conduction electrons are of crucial importance
in the determination of the qualitative as well as
quantitative aspects of the spin-wave frequency-
wavelength relation. In the complete absence of inter-
actions, for example, there are no spin waves at all; if
the interactions be attractive, the dispersion in the
frequency range so far explored would be linear and
nearly independent of the weak magnetization® whereas
repulsive interactions, as in alkalis, give a quadratic
spectrum,  « g¢%4-go%, which merges with the single-
particle continuum at progressively smaller ¢ as the
magnetization goes to zero. In conjunction with the
report of the experimental discovery, Platzman and
Wolff* have presented the results of an analysis of the
spin-wave spectrum in which particular attention is
paid to the experimental circumstances.

The spectrum depends strongly on the angle between
external field and propagation direction, and the meas-
urement of this anisotropy can provide information on
the interactions. The theory of Platzman and Wolff
takes as its starting point a transport equation due to
Silin,® the solutions to which determine the frequency
and wavelength dependence of the spin susceptibility
as functions of the interaction parameters. The structure
of the susceptibility function in turn gives the spin-wave
spectrum.

The purpose of our discussion is a reexamination of
the interpretation of the experimental results in terms
of parameters relating to the electron interactions.

Our remarks have three major aspects. First, we
doubt the transport equation used in Ref. 4. Unfor-
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tunately, Silin’s derivation®® of this equation is not
presented in sufficient detail for specific criticisms to be
made. We have presented a detailed derivation of our
proposed alternative transport equation in two papers
preceding this.”®* We shall cite the results of that
derivation here and contrast it term by term with Silin’s.

Second, the use of any transport equation to obtain
information about particle interactions requires auxil-
iary assumptions about the class of functional forms
which may be used to describe such interactions. That
is, the interaction function must be parametrized. We
shall show that this may be done in a variety of more or
less equally plausible ways, all quite consistent with the
experiments.!

Finally, we argue that neither our equation® nor
Silin’s® may apply in this range of wavelengths and
frequencies, that the attempt to apply them anyway
may represent a violation of the uncertainty relation
between noncommuting observables. It will be clear,
however, that the range of clear validity of the trans-
port equation is experimentally accessible.

We proceed, then, to our interpretation of the experi-
ments based on semiclassical Boltzmann-like equations
because (1) the equations are not manifestly invalid
and the limitations we cite may be only of the derivation
and not its result; (2) many authors have used semi-
classical equations, and so they represent a conventional
approximation whose predictions are worthy of record-
ing; (3) the numbers produced by this approximation
outside its range of clear validity may eventually be
compared to those obtained in the accessible, valid
regime.

In Sec. II, we effect the detailed comparison of our
equation and Silin’s. In Sec. III, we consider various
possible parametrizations of the interaction potential of
the electrons and the values of the parameters the
experiments demand. An interesting result of this
section is that, using our transport equation, only one
parameter of the interaction can be determined from the
experiment of Ref. 1, rather than the two parameters
found in Ref. 4, and that very parameter occurs in the

6 V. P. Silin, Zh. Eksperim. i Teor. Fiz. 33, 1227 (1957) [English
transl.: Soviet Phys.—JETP 6, 945 (1958) 1.

7 L. L. Van Zandt, preceding paper, Phys. Rev. B 1, 3217 (1970).

8L. L. Van Zandt, second preceding paper, Phys. Rev. B 1
3223 (1970).
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theory of the Pauli paramagnetic susceptibility. In
Sec. IV, we discuss the failure of the semiclassical
approximation to account properly for the uncertainty
principle.

II. TRANSPORT EQUATIONS

A Boltzmann form of equation relating electron-spin
magnetization density to its time and space derivatives
has been given by Silin.? Platzman and Wolff* use this
formula to obtain the satellite spin-wave spectrum,
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— +[v- V+—vXB- Vk+i90:|(8+6e2)
at fic

In this, > x—(8fo/dEx)g is the total rf spin magnetiza-
tion density, v is the electron velocity, B the applied
magnetic field, Qo a “renormalized” spin-precession
frequency,
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V(kk') an effective electron-interaction potential
function and %* a circularly polarized rf driving field.
We have allowed the electron lifetimes to be infinite
since we shall not be interested in any effects arising
from the failure of this approximation. These effects
broaden the observed resonances but do not shift them
substantially.!

In Ref. 8 we obtained an equation for the qth Fourier
component of the magnetization density.

. 6mk X €
th—— 4 { ext — €rrqs —1A—B X (k+q/2) - Vi My
at mc

= %ﬁ]{)’oh’*"‘Z V(k —k,) (fﬁkmk/ —E)_’kafmk) . (3)
=
In this,
f’_lkE Nryqd —Hxt, (4)
Nix= b(k)ﬁk (5)
The function &(k) measures the response of each electron
to the spin-wave disturbance. We have used 3yt in (3);
the corresponding parameter in Ref. 8 was .

The last terms in (3) are the exchange energies. If we
define &,, as the “one-particle energy,” we have

6k,a:€k,a'—z V(kykl)nk',"7 (6)
k/
and obtain
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This is our master equation and is almost identical to
Eq. (1). This assertion requires demonstration, however.
Let 9= (9 fo/ t)gx. The energy difference &iyqs— it
may be written &xiqi — Exi+ Sxs— Ext. The last two
terms of this are

YoBot+2 V(KK (nirt —nxr1) =voBeit, 8)
k/

and the first two are clearly q:Vi8e=q-#vy if ¢Kkp.
Now Vi operating on 917 gives
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But since k= pkXB, is perpendicular to k and since k
and #vy=V,§ are parallel, k- V, =0, and the second
term of (9) does not contribute. The left-hand side of (7)
is now

dfo
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The factor 9x may be written
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We use the equilibrium distribution fy(8x) for 7y and
obtain
dfo
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We can divide (7) by the common factor df,/98 to
obtain
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and since 8 fo/ 0 E=~—§(E—Ey) the sum over gy is just
des in the notation of Ref. 4. We may use (11) and (12)
in (8) to obtain Begs:
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again in the notation of Ref. 4. In Sec. ITI we reexamine
this equation in greater detail.

Our final term —k-V,g is the term in which the
Boltzmann-like transport equation and the self-
consistent field equations differ.

This orbital term is

1(e/c)vX B- Vi (g+bes) (15)
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in Ref. 4, whereas we have obtained
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Now,
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We can therefore write (16) as
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The difference (15) —(16) is thus
e dfo
i~ VXB- Vi 2 V(kk)——gw
c 'Y a8
—h‘IVk Z V(k,k’)%kIXB . ng . (18)
kl

It is convenient to restore the factor d/y/98, and if we
assume V(kk')=V(k—k’),
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These two terms differ only in the roles of k and k. The
angular average value of the difference, that is (19)
summed over k, clearly vanishes, but higher moments
do not, and, to the extent that these higher moments

are involved in the solutions of (7), the two approaches
will differ.

III. OTHER POTENTIALS

Because the interaction function V(kk’) appears
prominently in the transport equations, the solutions
of the equations fitted to experimental results yield
information about the interactions. The experimental
data are very meager, however. One or at best two,
numbers are determined.! In Ref. 4 these experimental
numbers are related to theoretical parameters describing
a particular, assumed form for the interaction function:

V(k,k)=Vo+Vi1cosh, (20)

where 6 is the angle between k and k’. This function is
well behaved and smooth throughout the entire range
of k—k’. We shall consider here the extent to which this
interpretation is demanded by the data and the possible
consequences of including less well-behaved functions
in the parametrizations.

The interactions appear in Eq. (3) in two ways,
explicitly in the driving field and response terms, and
implicitly in the energy and occupation differences of
spin up and down states.
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We shall treat two different forms of interaction

" potential. The first is similar to (20),

V= Vot Vi(k—Kk')2. (21)
The second is the Coulomb interaction
V=U/(k—k')2. (22)

In the preceding section, we incorporated the ex-
change energy and the kinetic energy into a single
function, assumed differentiable, in order to make at
least partial contact with the Silin equation.

We wish to consider cases where the assumption of
differentiability fails. We therefore study Eq. (3), in
which the assumption is unnecessary, rather than (7)
where it is required.

Our first task is to evaluate 9T =1y q4 —7xt. We make
a 0 temperature approximation in which 7y =1 for
(gk,¢< gp, =0 fOI‘ gk,¢> 814’

The single-particle energy of the electrons is
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Using (21), we have
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Since the Fermi energy must be the same for both spin
species, we can use (24) to obtain the difference of the
two Fermi radil kpy—kpt=Akp:
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The corresponding result for the potential in Eq. (22) is
voB mU T
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To obtain 9T, then, we need to compare two Fermi
spheres of slightly different radii, the larger one dis-
placed by —q. However, rather than treat the geometry
of this situation exactly, we shall approximate 9T with a
product of a § function on the spherical surface and a
weighting factor over the surface which gives the same

value for
|k|>kF
/ S ||
|
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It is clear from the form of Eq. (3) that 91x has essen-
tially the same behavior as a function of |k| as 9, so
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that we are led to take

M= 5([k| —kr)
X {mo+mi KA miky+mi kA4 -}

In the course of using this expansion in (3) to obtain
the coefficients of 91, one observes that the each suc-
cessively higher-order coefficient is also of higher order
in gR,, where R, is the cyclotron radius. (See Sec. IV,
however.) This circumstance greatly facilitates solution;
(28) proves to be adequate as it stands to obtain the
spin-wave spectrum accurate to terms in ¢2R.2% All
terms of relative order ¢/kr in (3) lhave also been
dropped since ¢/kr<KgR K1 in the circumstances of the
experiments.!

We evaluate the integral in (3) in terms of mo and
ma; to obtain

8(|k| —kp)__ _
— —2;2—_[V0+ (8/3)kF2V1]kp2

(28)

k-q
X<mO4k‘_‘+Aklv‘[m1xkx+mlyky+mlzkz]> (29)

F

for the case of potential (21). Using the potential (22)
gives the same expression but with

U
[Vo+(8/3)kr2V1] replaced by —— .
2kp?

_We have seen that Akp is given in terms of
Vo+(8/3) Vik r2. We notice that this same combination
has occurred in (29), and this exhausts the dependence
of the terms in (3) on the interactions. It is therefore
clear that the use of the isotropic potential (21) provides
only a single parameter for fitting the experiments and
that this is the same parameter as appears in the static
paramagnetism. With the parametrization of (21), we
can, therefore, interpret the spin-wave spectroscopy of
Ref. 1 as a measurement of the exchange enhancement
of the spin susceptibility of heretofore unattainable
precision.

However, the assumption that ¥ (k,k’) depends only
on |k—k’| is a restrictive one. We have no reason to
suppose that the variation of V should be the same for
k,k’ separations both parallel and perpendicular to the
Fermi surface. In fact, we need only cite the Frolich
electron-phonon-electron coupling to give a counter
example. We shall not treat such potentials here, since
our whole development has incorporated the assumption
that V is a function only of k—k’.

Still it is clear that Ak p is determined by the “perpen-
dicular” aspect of the interactions and the exchange
integral of (3) by the “parallel” aspect.

Substituting into Eq. (3) and solving for w yields

1/hkp\? w2 cos2A — 3202
et (Y g
3\ m (20282 —wc2)B

(30)
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in which
hws=7.B, (31
5= L L b (kT = o (Vo=i7), (32)
2n*h? 2mh?
w.=eB/mc, (33)
Qo=".B/(1—B)=ws/(1-6), (34)

A is the angle between q and B, and m is the cyclotron
mass. In (32) we have shown the results in terms of the
potential (20). Potentials (20) and (21) are identical on
the Fermi surface if

Vo= 170+2kp2171 and V1= —2kp2171. (35)

Two experimental quantities are measured!: the
angle A, between field and the normal to the sample
for which the dispersion of the spin waves vanishes and
all peaks coalesce into the main CESR line, and the
frequency splitting of the first resonance at some
reference angle, in this case A= 3m. The angle of vanish-
ing dispersion!=69.7°. Inserting this into (30) and
using w;/w,=1.24 one obtains $=0.219. Using this
value and kp=0.92X10% cm™ and ¢g= 133, one obtains
for Hy—H1=17.5 G. The experimental value is about
18.2 G more or less; the line is somewhat broad. This
3 to 49, discrepancy could be caused by a number of
things: an error in A, of 0.8°, which is twice the quoted
experimental range, an error of 0.01 —0.02X 1078 in kp
or the same fractional error in ¢ (which is unlikely) or .
The theory could require modification by inclusion of
the effect of higher terms in the expansion for 9 or
V(k,k’') since the value of the expansion parameter! is
gR,~0.1, or by inclusion of the possible effects of
anisotropic potentials ¥ (k,k’) which depend on k+k'.
The discrepancy is not clearly significant; we have
achieved a fairly good one-parameter interpretation of
the experiments.

The use of the Coulomb potential, Eq. (22), with
U=4me?* does not give satisfactory agreement:

m(4we?)
An2hk p

=0.8113,

which is too large by a factor of almost 4. The inclusion
of phonon effects in addition to the naked Coulomb
repulsion would be expected to lower this somewhat,
but not nearly by the required 70%. Still it is interesting
that unscreened Coulomb interactions produce no
greater discrepancy.

In summary, we have seen that the experimental
results demand that (1) the Coulomb interactions
between the electrons are somehow screened, (2) the
value of the interaction parameter 8 must be 0.22 = a
few percent, and (3) any parametrization of the inter-
action function for which the singular behavior, if any,
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is no worse than Coulombic or any linear combination
of such potentials which produce a net 8=0.22 will
serve to interpret the experiments.

There are theoretical reasons to expect the potentials
to be nonsingular, or at least not so strongly singular
as the Coulomb interaction. This conclusion is neither
sustained nor refuted by these experiments. We do
expect the inclusion of the electron-phonon-electron
interaction to require treating singular potentials. We
believe that the experimental determination of the form
of the interactions is an independent problem of equal
importance with the theoretical study and are disap-
pointed that these experiments provide no test of the
question.

IV. UNCERTAINTY PRINCIPLE

The solution of the transport equations—ours and
Silin’s—involves an expansion in powers of

qRK1, (36)

where R, is the radius of the cyclotron orbit, and this
range of wave vectors and magnetic fields is explored
in the experiments. The derivations of both transport
equations require the clear distinction between occupa-
tion of states k and k+q, at least along the k-space
direction defined by q. We have made this condition
explicit in Ref. 8; Silin’s use of the Boltzmann equation
seems to imply it; to write V- Vf assumes that ¥ and k
may be sufficiently precisely stated to make the expres-
sion meaningful. We must be able to distinguish the
velocity and its time derivative for the two states. Along
a direction perpendicular to q, we need only require that
the blurring of precise occupations not be so severe as
to destroy the Fermi surface. Hence this second assump-
tion is contained implicitly in the use of & functions on
the Fermi energy for the characteristic functions
Mgt —Hxt as they appear [Egs. (2), (9), (12), (13), and
so forth]. Thus, we require

(Aky) (AR <K gk p (37

as the condition for the applicability of the semiclassical
Boltzmann equation theory of electron plasma response.
We must emphasize, however, that the condition (37)
limits only the conceptual tools with which the trans-
port equation has been constructed and that we do not
know that the final equation is invalid in the range
¢Z(Akyy), only that the derivation fails. Still, to attach
any significance to the interpretations of experiments
will require a new derivation whose applicability is not
open to question.

We have derived a condition (Ref. 8) similar to (37);
the meanings of the A%’s are changed somewhat.

The condition (37) or the similar condition in Ref. 8
contradicts (36). Let us see how this comes about.

The electron states in the Boltzmann-equation
approach are described by wave packets acted on by
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the Lorentz force—in particular evX B—with v given
by # 'V 8(k). The packets are reduced in spread in
k space to a well-defined k for the construction of a
many-body wave function. In the absence of a magnetic
field, vy thereby becomes progressively better defined.

In the presence of a magnetic field, however, vy is
less well defined by this process. The reason is that
mv=p—eA/c depends on position r as well as momen-
tum, and as the states are progressively better defined
in momentum space, they spread out in direct space,
making operators like r, v, and V uncertain. The
expression

vXB- Vg (38)

has meaning only if we can tolerate an uncertainty in v.
The two components of v of interest are

mv= p+ (eB/2¢)y,
moy,= py,—(eB/2¢)x.

(39)
(40)

If we calculate the commutator of these operators, we
obtain

[vaymv, |=1h(eB/mc) = ihw,. (41)
Therefore, we must have
(Avz)(Avy) Steoe/m (42)
or in terms of £’s
#2(Ak,) (Aky)/2m S o, . (43)

If we take q to lie along the x direction, we have Ak,

for Ak and Ak, for Ak,. Thus,
n2gkp/2m> h2(Akn) (AkL)/2m X o, (44)

defines the limiting range of the Boltzmann equation in
magnetic fields. Now,

Ro=tkr/mw.. (45)

We have then for (44)
h2qkr/2m> S hw,= #*kr/2mR,;, (46)

from which we obtain
qR:>1. 47

The same condition is obtained from more formal
arguments in Ref. 8.

V. CONCLUSIONS

We have argued previously for a certain transport
equation. We have shown here that this equation is
different from the one suggested by Silin and used by
Platzman and Wolff. We have calculated the CESR
spin-wave satellite spectrum using our transport
equation.

The electron interaction function, V(k,k’) cannot be
uniquely determined from the present experiments
since different functional forms for ¥ may lead to the
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same experimental results. Even strongly singular func-
tions V (k,k’) may be quite consistent with the experi-
mental results.

If our transport equation is applicable, the experi-
ments represent a measurement of Pauli paramagnetism
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of enormously improved precision. However, the deriva-
tions of the transport equations are uncertain in the
range of experiments so far carried out, raising doubts
about the significance of the numbers which either
theory inexorably produces.
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Impurity Ionization in Germanium in Strong Magnetic Fields™
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Low-temperature electrical breakdown in p-type germanium has been investigated at magnetic-field
strengths up to 52 kOe. The electric-field strength required for the onset of breakdown in gallium-doped
germanium increased from 4.2 V/cm at zero magnetic field to 22 V/cm in a 50-kOe transverse magnetic field.
For a longitudinal magnetic field of the same range, there is a smaller variation of breakdown electric field
with a maximum of 7.2 V/cm at 50 kOe. The effect is independent of the polarity of electric field applied to
the specimen in all cases. The increase in electric field required for breakdown appears to be in reasonable
agreement with recent theories of impact-ionization phenomena, provided that the quantization and shift
of energy levels in a strong magnetic field are considered together with the effect of transverse magnetic fields
on the rate at which carriers gain energy from an electric field. Measurements of the changes of the far-
infrared photoconductivity of the specimen in the magnetic field provide further evidence of the effect of the

field on the ionization phenomena.

INTRODUCTION

HE low-temperature electrical-breakdown effect
in germanium containing group-III impurities
has been investigated, both experimentally and theo-
retically.’™ There is fair qualitative agreement between
the experimental results and the theoretical descriptions
of the effect in most aspects. The nature of the break-
down phenomena has been experimentally investigated
as a function of a variety of experimental parameters by
both Sclar and Burstein! and by Zavaritskaya.? How-
ever, the effect of a magnetic field on the impact-
ionization process has been investigated only in the
low-field regime!?:® where quantization effects are not
important. This paper reports measurements of low-
temperature electrical breakdown in strong magnetic
fields where quantization and shift of the energy levels
are significant. The results are interpreted in terms of
recent theories of breakdown phenomena taking into
account the effect of the magnetic field on the energy-
level separation, the mobility and the recombination
coefficient. Measurements of the effect of the magnetic
field on the far-infrared extrinsic photoconductivity of
the same specimens are used to derive supporting
evidence as to the nature of the physical phenomena
involved.
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(I)JG.OE.CDepartment of the Navy, under Contract No. NOw 62-
I N. Sclar and E. Burstein, J. Phys. Chem. Solids 2, 1 (1957).
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¢ J. Yamashita, J. Phys. Soc. Japan 16, 720 (1961).

4 M. E. Cohen and P. T. Landsberg, Phys. Rev. 154, 683 (1967).
8 F. J. Darnell and S. A. Friedberg, Phys. Rev. 98, 1860 (1955).

Low-temperature electric breakdown in impurity
semiconductors is caused by impact ionization of
neutral impurity centers by hot carriers.® As the
strength of the applied electric field increases, the
average kinetic energy of the charge carriers becomes
sufficient to ionize neutral centers. The recombination
process which reduces the number of free carriers
becomes less effective at high fields since the capture
cross section decreases with increasing carrier energy.
For electric-field intensities exceeding a certain critical
value, the ionization rate exceeds the recombination
rate and a nonequilibrium condition is obtained. The
critical field is regarded as the breakdown field with
the breakdown condition being expressed in terms of
the kinetic equation’

d[)/dt=AT(NA—ND——PH-P[AI(NA—-ND—P)
—Br(Np+p)1—p*B:(Np+p). (1)

The increase in the number of free holes p is related to
Ay and Ay, which represent the rates of carrier gen-
eration by thermal processes and impact ionization,
respectively ; Br and By describe the thermal and Auger
recombination rates, respectively. In a compensated
material containing both types of impurities, Np is the
density of donor centers, while V4 is the acceptor
density. Under steady-state conditions, if we neglect
Auger recombination and thermal-carrier generation

6S. H. Koenig, R. D. Brown, and W. Schillinger, Phys. Rev.
128, 1668 (1962).

7A. G. Chynoweth, Semiconductors and Semimetals (Academic
Press Inc., New York, 1968), Vol. 4, p. 323.



